Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.17.22273906

ABSTRACT

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.09.21264695

ABSTRACT

The SARS-CoV-2 ARTIC amplicon protocol is the most widely used genome sequencing method for SARS-CoV-2, accounting for over 43% of publicly-available genome sequences. The protocol utilises 98 primers to amplify ~400bp fragments of the SARS-CoV-2 genome covering all 30,000 bases. Understanding the analytical performance metrics of this protocol will improve how the data is used and interpreted. Different concentrations of SARS-CoV-2 control material were used to establish the limit of detection (LoD) of the ARTIC protocol. Results demonstrated the LoD was a minimum of 25-50 virus particles per mL. The sensitivity of ARTIC was comparable to the published sensitivities of commercial diagnostics assays and could therefore be used to confirm diagnostic testing results. A set of over 3,600 clinical samples from three UK regions were then evaluated to compare the protocols performance to clinical diagnostic assays (Roche Lightcycler 480 II, AusDiagnostics, Roche Cobas, Hologic Panther, Corman RdRp, Roche Flow, ABI QuantStudio 5, Seegene Nimbus, Qiagen Rotorgene, Abbott M2000, Thermo TaqPath, Xpert). We developed a Python tool, RonaLDO, to perform this validation (available under the GNU GPL3 open-source licence from https://github.com/quadram-institute-bioscience/ronaldo). Positives detected by diagnostic platforms were generally supported by sequencing data; platforms that used RT-qPCR were the best predictors of whether the sample would subsequently sequence successfully. To maximise success of sample sequencing for phylogenetic analysis, samples with Ct <31 should be chosen. For diagnostic tests that do not provide a quantifiable Ct value, adding a quantification step is recommended. The ARTIC SARS-CoV-2 sequencing protocol is highly sensitive, capable of detecting SARS-CoV-2 in samples with Cts in the high 30s. However, to routinely obtain whole genome coverage, samples with Ct <31 are recommended. Comparing different virus detection methods close to their LoD was challenging and significant discordance was observed.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.12.21261987

ABSTRACT

BackgroundCommunity surveys of SARS-CoV-2 RT-PCR swab-positivity provide prevalence estimates largely unaffected by biases from who presents for routine case testing. The REal-time Assessment of Community Transmission-1 (REACT-1) has estimated swab-positivity approximately monthly since May 2020 in England from RT-PCR testing of self-administered throat and nose swabs in random non-overlapping cross-sectional community samples. Estimating infection incidence from swab-positivity requires an understanding of the persistence of RT-PCR swab positivity in the community. MethodsDuring round 8 of REACT-1 from 6 January to 22 January 2021, of the 2,282 participants who tested RT-PCR positive, we recruited 896 (39%) from whom we collected up to two additional swabs for RT-PCR approximately 6 and 9 days after the initial swab. We estimated sensitivity and duration of positivity using an exponential model of positivity decay, for all participants and for subsets by initial N-gene cycle threshold (Ct) value, symptom status, lineage and age. Estimates of infection incidence were obtained for the entire duration of the REACT-1 study using P-splines. ResultsWe estimated the overall sensitivity of REACT-1 to detect virus on a single swab as 0.79 (0.77, 0.81) and median duration of positivity following a positive test as 9.7 (8.9, 10.6) days. We found greater median duration of positivity where there was a low N-gene Ct value, in those exhibiting symptoms, or for infection with the Alpha variant. The estimated proportion of positive individuals detected on first swab, P0, was found to be higher for those with an initially low N-gene Ct value and those who were pre-symptomatic. When compared to swab-positivity, estimates of infection incidence over the duration of REACT-1 included sharper features with evident transient increases around the time of key changes in social distancing measures. DiscussionHome self-swabbing for RT-PCR based on a single swab, as implemented in REACT-1, has high overall sensitivity. However, participants time-since-infection, symptom status and viral lineage affect the probability of detection and the duration of positivity. These results validate previous efforts to estimate incidence of SARS-CoV-2 from swab-positivity data, and provide a reliable means to obtain community infection estimates to inform policy response.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21259103

ABSTRACT

BackgroundEngland entered a third national lockdown from 6 January 2021 due to the COVID-19 pandemic. Despite a successful vaccine rollout during the first half of 2021, cases and hospitalisations have started to increase since the end of May as the SARS-CoV-2 Delta (B.1.617.2) variant increases in frequency. The final step of relaxation of COVID-19 restrictions in England has been delayed from 21 June to 19 July 2021. MethodsThe REal-time Assessment of Community Transmision-1 (REACT-1) study measures the prevalence of swab-positivity among random samples of the population of England. Round 12 of REACT-1 obtained self-administered swab collections from participants from 20 May 2021 to 7 June 2021; results are compared with those for round 11, in which swabs were collected from 15 April to 3 May 2021. ResultsBetween rounds 11 and 12, national prevalence increased from 0.10% (0.08%, 0.13%) to 0.15% (0.12%, 0.18%). During round 12, we detected exponential growth with a doubling time of 11 (7.1, 23) days and an R number of 1.44 (1.20, 1.73). The highest prevalence was found in the North West at 0.26% (0.16%, 0.41%) compared to 0.05% (0.02%, 0.12%) in the South West. In the North West, the locations of positive samples suggested a cluster in Greater Manchester and the east Lancashire area. Prevalence in those aged 5-49 was 2.5 times higher at 0.20% (0.16%, 0.26%) compared with those aged 50 years and above at 0.08% (0.06%, 0.11%). At the beginning of February 2021, the link between infection rates and hospitalisations and deaths started to weaken, although in late April 2021, infection rates and hospital admissions started to reconverge. When split by age, the weakened link between infection rates and hospitalisations at ages 65 years and above was maintained, while the trends converged below the age of 65 years. The majority of the infections in the younger group occurred in the unvaccinated population or those without a stated vaccine history. We observed the rapid replacement of the Alpha (B.1.1.7) variant of SARS-CoV-2 with the Delta variant during the period covered by rounds 11 and 12 of the study. DiscussionThe extent to which exponential growth continues, or slows down as a consequence of the continued rapid roll-out of the vaccination programme, including to young adults, requires close monitoring. Data on community prevalence are vital to track the course of the epidemic and inform ongoing decisions about the timing of further lifting of restrictions in England.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.04.21258352

ABSTRACT

BackgroundThe SARS-CoV-2 pandemic continues to expand globally, with case numbers rising in many areas of the world, including the Indian sub-continent. Pakistan has one of the world s largest population, of over 200 million people and is experiencing a severe third wave of infections caused by SARS-CoV-2 that begun in March 2021.In Pakistan, during third wave until now only 12 SARS-CoV-2 genomes have been collected and among these 9 are from Islamabad. This highlights the need for more genome sequencing to allow surveillance of variants in circulation. In fact more genomes are available among travellers with a travel history from Pakistan, than from within the country itself. MethodsFor a better understanding of the circulating variants in Lahore and surrounding areas with a combined population of 11.1 million, within a week of April 2021, 102 samples were sequenced. The samples were randomly collected from 2 hospitals with a diagnostic polymerase chain reaction (PCR) cutoff value of less than 25 cycles. ResultsAnalysis of the lineages shows that B.1.1.7 (first identified in the UK, Alpha variant) dominates, accounting for 97.9% (97/99) of cases, with B.1.351 (first identified in South Africa, Beta variant) accounting for 2.0% (2/99) of cases. No other lineages were observed. DiscussionIn depth analysis of the B.1.1.7 lineages indicates multiple separate introductions and subsequent establishment within the region. Eight samples were identical to genomes observed in Europe (7 UK, 1 Switzerland), indicating recent transmission. Genomes of other samples show evidence that these have evolved, indicating sustained transmission over a period of time either within Pakistan or other countries with low density genome sequencing. Vaccines remain effective against B.1.1.7, however the low level of B.1.351 against which some vaccines are less effective demonstrates the requirement for continued prospective genomic surveillance.

6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.13.21257144

ABSTRACT

BackgroundNational epidemic dynamics of SARS-CoV-2 infections are being driven by: the degree of recent indoor mixing (both social and workplace), vaccine coverage, intrinsic properties of the circulating lineages, and prior history of infection (via natural immunity). In England, infections, hospitalisations and deaths fell during the first two steps of the "roadmap" for exiting the third national lockdown. The third step of the roadmap in England takes place on 17 May 2021. MethodsWe report the most recent findings on community infections from the REal-time Assessment of Community Transmission-1 (REACT-1) study in which a swab is obtained from a representative cross-sectional sample of the population in England and tested using PCR. Round 11 of REACT-1 commenced self-administered swab-collection on 15 April 2021 and completed collections on 3 May 2021. We compare the results of REACT-1 round 11 to round 10, in which swabs were collected from 11 to 30 March 2021. ResultsBetween rounds 10 and 11, prevalence of swab-positivity dropped by 50% in England from 0.20% (0.17%, 0.23%) to 0.10% (0.08%, 0.13%), with a corresponding R estimate of 0.90 (0.87, 0.94). Rates of swab-positivity fell in the 55 to 64 year old group from 0.17% (0.12%, 0.25%) in round 10 to 0.06% (0.04%, 0.11%) in round 11. Prevalence in round 11 was higher in the 25 to 34 year old group at 0.21% (0.12%, 0.38%) than in the 55 to 64 year olds and also higher in participants of Asian ethnicity at 0.31% (0.16%, 0.60%) compared with white participants at 0.09% (0.07%, 0.11%). Based on sequence data for positive samples for which a lineage could be identified, we estimate that 92.3% (75.9%, 97.9%, n=24) of infections were from the B.1.1.7 lineage compared to 7.7% (2.1%, 24.1%, n=2) from the B.1.617.2 lineage. Both samples from the B.1.617.2 lineage were detected in London from participants not reporting travel in the previous two weeks. Also, allowing for suitable lag periods, the prior close alignment between prevalence of infections and hospitalisations and deaths nationally has diverged. DiscussionWe observed marked reductions in prevalence from March to April and early May 2021 in England reflecting the success of the vaccination programme and despite easing of restrictions during lockdown. However, there is potential upwards pressure on prevalence from the further easing of lockdown regulations and presence of the B.1.617.2 lineage. If prevalence rises in the coming weeks, policy-makers will need to assess the possible impact on hospitalisations and deaths. In addition, consideration should be given to other health and economic impacts if increased levels of community transmission occur.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.08.21256867

ABSTRACT

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained from a variety of sources. Here, we describe lineage dynamics and phylogenetic relationships using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR during the first three months of 2021 as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the B.1.1.7 lineage (first identified in Kent) predominant, driven by a 0.3 unit higher reproduction number over the prior wild type. During January, positive samples were more likely B.1.1.7 in younger and middle-aged adults (aged 18 to 54) than in other age groups. Although individuals infected with the B.1.1.7 lineage were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild type, they were more likely to be antibody positive 6 weeks after infection. Viral load was higher in B.1.1.7 infection as measured by cycle threshold (Ct) values, but did not account for the increased rate of testing positive for antibodies. The presence of infections with non-imported B.1.351 lineage (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing and targeted public health interventions and does not immediately imply similar lineages could not become established in the future. Sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.28.20201475

ABSTRACT

The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3,200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organisations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1,565 positive samples (172 per 100,000 population) from 1,376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6% of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. 1,035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically-distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a sublineage associated with 6 care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients indicating infection control measures were effective; found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.24.162156

ABSTRACT

The COVID-19 pandemic has spread to almost every country in the world since it started in China in late 2019. Controlling the pandemic requires a multifaceted approach including whole genome sequencing to support public health interventions at local and national levels. One of the most widely used methods for sequencing is the ARTIC protocol, a tiling PCR approach followed by Oxford Nanopore sequencing (ONT) of up to 24 samples at a time. There is a need for a higher throughput method to reduce cost per genome. Here we present CoronaHiT, a method capable of multiplexing up to 95 small genomes on a single Nanopore flowcell, which uses transposase mediated addition of adapters and PCR based addition of symmetric barcodes. We demonstrate the method using 48 and 94 SARS-CoV-2 genomes per flowcell, amplified using the ARTIC protocol, and compare performance with Illumina and ARTIC ONT sequencing. Results demonstrate that all sequencing methods produce inaccurate genomes when the RNA extract from SARS-CoV-2 positive clinical sample has a cycle threshold (Ct) >= 32. Results from set same set of 23 samples with a broad range of Cts show that the consensus genomes have >90% coverage (GISAID criteria) for 78.2% of samples for CoronaHiT-48, 73.9% for CoronaHiT-94, 78.2% for Illumina and 73.9% for ARTIC ONT, and all have the same clustering on a maximum likelihood tree. In conclusion, we demonstrate that CoronaHiT can multiplex up to 94 SARS-CoV-2 genomes per nanopore flowcell without compromising the quality of the resulting genomes while reducing library preparation complexity and significantly reducing cost. This protocol will aid the rapid expansion of SARS-CoV-2 genome sequencing globally, to help control the pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL